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Abstract—In this paper we propose a model decomposition
architecture, which advances on our previous attempts of learning
an approximated forward model for unknown games [1]. The
developed model architecture is based on design constraints of
the General Video Game Artificial Intelligence Competition and
the Video Game Definition Language. Our agent first builds up
a database of interactions with the game environment for each
distinct component of a game. We further train a decision tree
model for each of those independent components. For predicting
a future state we query each model individually and aggregate
the result. The developed model ensemble does not just predict
known states with a high accuracy, but also adapts very well
to previously unseen levels or situations. Future work will show
how well the increased accuracy helps in playing an unknown
game using simulation-based search algorithms such as Monte
Carlo Tree Search.

Index Terms—Forward Model Approximation, Decision Trees,
Ensemble Learning, General Video Games

I. INTRODUCTION

In recent years reinforcement learning showed to be one of

the most successful methods in the context of computational

intelligence in games [2], [3]. In a work of GoogleDeepMind an

agent was trained to play a collection of “Atari 2600” games.

The agent was often capable of playing on a super-human

level, but a total of 38 days of simulated play time was used

to learn each of the 49 games [4]. Another example is the

work by OpenAI [2], in which they trained a team of agents

playing the game Dota 2. While the trained agents are able

to beat semi-pro teams in a restricted version of the game,

the total time of simulated play exceeds thousands of years.

Despite the impressive results, such long learning times are

rather unreasonable when compared to a human player.
Recently, we proposed a different approach for learning

unknown games from scratch [5]. In contrast to reinforcement

learning methods, which learn to choose actions to maximize

their expected future reward, we apply simulation-based search

algorithms to find the next move in an online search. These

methods use a forward model to predict the outcome of an

action. In case the forward model is not available it can be

approximated during repeated interactions with the game. Such

an approximated forward model allows us to apply methods

such as Monte Carlo Tree Search (MCTS) [6] for finding

actions that maximize the player’s score or his chances in

winning the game.

In a previous study we tested Forward Model Approximation

in comparison with other agents on the General Video Game

Artificial Intelligence-framework (GVGAI) [7]. It outperformed

other agents, which were developed for the learning track of the

corresponding competition, while being trained for significantly

shorter training times. In our previous study the developed

models were limited to a small subset of the state observations.

Here, it proved to be beneficial to not just create a single model,

but multiple models, each predicting different components of

the game.

In this paper we expand on the concept of forward model

approximation, by designing a model learning scheme in

context of the GVGAI-framework. While the original model

was limited to modelling only the player and its interactions, the

new model architecture should be able to model all instances

of an unknown game. This split into multiple models allows it

to decrease the learning time, while improving the accuracy

of the model.

The main contributions of the paper are:

• a theoretical justification of forward model approximation

and its improvements based on model splitting

• explanations on how to decompose a model into multiple

separate sub-models

• an analysis of the models accuracy

• an outlook on the agent model being developed using the

approximated forward model

Section II briefly outlines the GVGAI framework and the

many solutions that were submitted to the GVGAI competition.

Section III reviews the basics of reinforcement learning and

forward model approximation. Furthermore, we explain in

detail how forward model approximation deviates from the

classical reinforcement learning based approach. After that,

in Section IV, we describe how model decomposition can be

used to reduce the complexity of an approximated forward

model. Results of the model decomposition procedure will

be shown in Section V. In the same section we will evaluate

the models accuracy in a set of games used in the GVGAI-

competition. A conclusion and an outlook on future work are

given in Section VI.
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II. GENERAL GAME PLAYING

In contrast to learning an agent for a single game, general

game learning focusses on the development of agents, which

are able to learn and play a diverse set of games. Many early

works studied games based on the Stanford General Game

Playing competition [8], in which agents competed in various

previously unknown games. Those were defined in a game

description language and consisted of multiple logical rules

for state-transitions, actions, and the number of players.

Due to the popularity and flexibility of video games, similar

competitions were initialized for studying digital games. One

of those is the GVGAI competition [7], which started in 2014.

In the GVGAI competition games are defined using the Video

Game Definition Language [9]. The competition framework

currently provides about 100 arcade like video games. Agents

can either read the graphical or logical output of the game and

provide actions in the form of controller input.

In the game playing track agents are provided with a forward

model of the game to be played. This allows the application

of simulation-based search methods such as Monte Carlo

Tree Search (MCTS), Rolling Horizon Evolutionary Algorithm

(RHEA) [10], [11], and Open Loop Search (OLS) [12]. A

complete overview of previously submitted agents can be

found in [13]. Another part of the competition is the game

learning track (since 2017), in which agents do not receive

information on the forward model, but need to adapt their

behaviour based on five minutes of interacting with the game.

Here, decisions can only be based on the current state and

the agent’s knowledge of previous interactions with the game.

Referring to the results of the competition in 2017, agents are

either based on reinforcement learning techniques or use simple

search schemes. Simulation-based search schemes cannot be

applied without addressing the absence of the forward model.

In previous competitions the agents’ performance in the

game playing track is much better than in the game learning

track. Agents are often able to win a game or at least find

action sequences in the game playing track, which yield a high

score, despite being confronted with a previously unknown

game or level. Agents of the learning track often struggle with

complex interactions between game entities or sparse rewards.

While the learned models are sometimes performing well on

the levels that were available during the training time, the

performance often dropped when confronting the agent with

previously unseen levels of already known games.1

In a recent paper we proposed a new learning scheme

called forward model approximation [1], which tries to bridge

the performance gap between agents of the playing and the

learning track. During repeated interactions the agent learns an

approximated forward model, which allows us to use simulation-

based search schemes, as they were used in the game playing

track. An approximated forward model with high prediction

accuracy will allow us to find action sequences, which are

likely to perform well in the real game.

1The analysis of learning track submissions is based on results presented on
the competition website [20], because of a lack of accompanying publications.

III. PRELIMINARIES

A. Action Environment Interface

The goal of reinforcement learning is to learn from repeated

interactions, such that the chosen actions focus on achieving

a pre-defined goal or maximizes an associated reward. In

general the action-environment interface can be used to describe

interactions between an agent and its environment. It consists of:

• Agent: the learner and decision-maker

• Environment: anything the agent can interact with. The

environment can be modelled as a set of states S , which

change based on the chosen actions of the agent.

• Actions: the set of actions A for influencing or interacting

with the environment.

• Reward: a numerical reward r ∈ R (provided by the

environment), which is to be maximized

At each time-step t the agent is asked to choose an action

at ∈ A based on the current state of the environment st ∈ S,

such that he maximizes the sum of received rewards over time.

Further, the environment transitions into a new state st+1 and

returns a numerical reward rt+1 to the agent.

In general the response of the environment can be modelled

as a probability distribution over all previous interactions with

the agent.

P (rt+1, st+1|s0, a0, r1, . . . , st, at, rt)

Learning or storing such a specific probability distribution is

often infeasible due to the exponential growth over time and

the large number of possible states, actions, and rewards.

Therefore, reinforcement learning often focuses on Markov

Decision Processes, in which we assume that the successor

state and reward are only dependent on the latest interaction

between the agent and the environment [14]. In other words

the probability distribution for the successor state reduces to:

P (st+1|s0, a0, r1, . . . , st, at, rt) = P (st+1|st, at)

and the reward function maps the last state action pair and the

successor state to a provided reward:

R(st, at, st+1) = rt+1

Reinforcement learning methods try to estimate the expected

reward for states or state-action pairs. The expected reward of

a state action pair is the weighted mean of all possible state

transitions and their associated reward:

r(s, a) = E[rt+1|st, at]
=

∑

r∈R

∑

st+1∈S

R(st, at, st+1) ·R(st+1|st, at)

The agent can now base its decisions on the maximal

expected future reward or the sum of expected future rewards.

Given enough time to learn an appropriate approximation of

the expected reward reinforcement learning methods proved to

effectively handle a wide range of decision-making tasks.
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B. Forward Model Approximation

In contrast to reinforcement learning methods, forward model

approximation does not try to approximate the expected reward

but uses information on previous observations to increase

its confidence in an approximated version of the forward

model. In case the Markov property is fulfilled a forward

model can be constructed by training a classifier to predict

the future state based on the previous state and the chosen

player action, therefore, estimating the probability distribution

P (st+1|st, at). The training of such a classifier is based on a

database of previous interactions with the environment. In case

the prediction accuracy is high enough, the learned model can

be used to simulate future states and predict the outcome of

an action sequence at run-time.

In general the complexity of learning such a classifier in an

unknown game world is extremely huge. Most often the number

of sensors, their possible values, and most of all the number

of possible environment states is too huge to find an efficient

mapping. Additionally, many environment states also mean that

the number of training examples needs to be high, such that the

classifier is able to generalize well. These criteria speak against

the learning of such approximated forward models, but luckily

environments in the context of games often impose restrictions

that make this learning process much more feasible.

For example, games often display multiple entities that act

mostly independent from each other (the player’s agent, non-

player characters, etc.). Predicting the next state for each of

them at once using a single model would unnecessarily enlarge

the classifier. Simpler models can be constructed by modelling

every single entity individually and aggregating the results of

all simple models to an overall state prediction later on.

A first study of the development of such a distributed

approximated forward model is covered in [1]. The developed

approximated forward model consisted of three sub-models.

Those models represented the player’s movement, the score

change, and the winning/losing conditions of the game. An

observation database was constructed by playing the game for

approximately one minute using random actions. The generated

model was stored as an ensemble of hierarchical knowledge

bases [15], [16]. Finally, we used the approximated forward

model in conjunction with Monte Carlo Tree Search to find

profitable actions.

In our tests the agent outperformed previous submissions

of the GVGAI-competition’s game learning track by a large

margin, despite being very restricted in its prediction capa-

bilities. Games that included complex interactions between

different game entities could not be simulated well, since the

developed models did not consider changes in the environment

other than the player’s position. In games in which only short

action sequences need to be planned, it was enough to consider

other entities to be static. If they change their position, the

next action plan can be adapted during the next turn. However,

games in which long term planning was necessary it was still

impossible to plan ahead due to the lack of prediction accuracy.

IV. AGENT MODEL

In this paper we advance on our previous ideas and develop

a scalable forward model architecture in the context of the

GVGAI competition. Before we present our developed model

we want to quickly review the model requirements:

• Learning Speed: For the application to the GVGAI-

framework the models learning time is limited to a total

of 5 minutes. This includes data collection and data pro-

cessing. Previous submission showed that reinforcement

learning approaches tend to learn too slow. We hope that

classifiers that can learn a reliable prediction from a small

set of examples may yield better agents.

• Processing Speed: Monte Carlo Tree Search and other

simulation-based search algorithms benefit from many

simulations. For this reason, the model needs to be fast

in its prediction to allow multiple simulations in the short

action time frame of 40ms. This time limit is strictly

enforced by the GVGAI-framework for which we develop

our agent.

• Generalization: It should be possible to use the model for

the prediction of unseen situations or levels. Overfitting

and underfitting of the learned model would hinder the

generalizability, therefore, the developed model would be

unsuitable to act as an approximated forward model.

• Accuracy: Utilizing the model as an approximated for-

ward model used for simulation-based search methods

requires a high prediction accuracy. Ensuring correctness

of simulated episodes increases the certainty of the

prediction and is a necessary requirement. Due to some

games being probabilistic it will not always be possible

to find a suitable model based on the recorded data, but

iteratively improving the model should be reliable for all

deterministic processes.

• Interpretability: While not being a strong requirement it

would be beneficial to have an interpretable model. This

would help the developers to detect apparent errors. It can

also be a basis for human-computer interaction in which

both a human player and the computer agent teach each

other, e.g. teaching a new player the rules of an unknown

game, pointing out mistakes in the prediction and give

counterexamples.

Based on the requirements we decided to use the J48

classifier, which is available in the machine-learning software

package weka [17], [18]. This classifier is an optimized

implementation of the C4.5 decision tree [19] to generate

pruned and unpruned decision trees.

A decision tree is a tree-based classifier and a popular choice

in machine learning applications, because of it simplicity and

speed. The inner nodes represent attribute conditions, whereas

leave nodes represent the prediction of the classifier. Edges are

associated with a decision made in an inner node. Decision

trees can also be represented as a set of rules, whereas each

path from the root node to any leave node represents a rule.
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Fig. 1. Comparison of forward model architectures: (left) single complex forward model for the whole environment; (middle) forward model-ensemble
consisting of a sub-model for each entity of the environment; (right) forward model-ensemble consisting of a sub-model for each type of entities

A. Model Architecture

As discussed in the Section III-B the architecture of the

forward model can have a drastic impact on the training time

and accuracy of the model. A single complex model learning all

the possible interactions of game entities might be too complex

to be learned efficiently. Instead of learning a single model we

can reduce the problem complexity by learning a model for

each independent component of a game. Those components can

for example be defined by each actor/character in the game.
The idea behind this will be shortly explained based on

the game alien, which is one of the games provided in the

GVGAI-framework. Figure 2 shows the visualization of an

aliens level. Here, the player controls a little spaceship, which

can fly left and right or shoot a bullet upwards. Incoming

alien spaceships need to be destroyed to win the game. Those

traverse the screen from left to right or inverse. When they

reached the end of their row they get down on the next row.

In case the player fails to shoot all alien spaceships till at least

one of them reaches the bottom of the screen he loses the

game. The player scores two points in case he shoots an alien

and one point when he shoots a boulder.
During the game alien spaceships will cover multiple

positions on the screen. In general each of those position

combinations forms a separate game state. However, predicting

the next position of a single alien spaceship is completely

independent of all other spaceships.

Fig. 2. Gamestate of the game ”aliens” from the GVGAI-framework. Four
types of entities: top: alien spaceships, middle: player shot and boulders,
bottom: player spaceship

In case two entities act independent from each other it is

simpler to model each entity on its own than modelling the

combined movement of all entities. For this reason we refrain

from learning a single complex model, but learn multiple simple

models for predicting the next game state. Such a collection of

single entity models first predicts the future state of each entity

and then aggregates their results to create the fully predicted

game state.

We can further optimize this procedure by grouping similarly

behaving entities into a unified model. Instead of building a

single model for each alien spaceship, all alien spaceships can

share a common model (considering that they exhibit a similar

behaviour). This not only decreases the number of models to be

trained, but also increases the amount of available data for the

model construction by including the data of all similar entities

in a single training set. Figure 1 highlights the differences of

the discussed forward model types.

Our final model for games of the GVGAI-framework was

constructed using the following steps:

1) First we collect data for each entity by observing the

game state using an agent, which is interacting randomly

with the game. All observable entities in the game

environment were recorded during a single playthrough

of the three available training levels. Changes of an

entity’s attributes were stored in a database, which was

later used for building a classifier.

2) Entities were grouped based on their typeID (provided by

the GVGAI framework). The typeID represents a natural

grouping of the Video Game Definition Language.

3) For each group we learn an independent forward model,

which predicts the state transition of a single entity, based

on the observed state transitions of all entities of the

same type. Additionally, we learn one model to predict

any score changes and another one to find the winning

or losing conditions of the game.

4) For the prediction of the next gamestate we predict the

state transition of each entity using its associated model.

The results are aggregated by incorporating the state

transitions of each entity into the current state.
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B. Model Learning

As explained in the previous section we collect a dataset of

entity observations for each type of entities. During the game

we track changes for each entity and insert those into their

type related data collection. In case a new object appears it is

added to the data collection process of its specific type. An

object is regarded to have been updated in case one of its target

attributes changes (position change or object destruction). The

time since the last update is tracked for each entity individually

to model time-dependent state transitions.

During the data collection we store the position (pixel and

grid position) of an entity, its neighbouring entities in the

grid, and its relative position to the player. Additionally, we

keep track of the object’s last movement and the delay of its

last update. In case an entity does not appear in one of the

following game-states, it is considered to have been destroyed

and, therefore, removed from the data collection process. For

each entity type we store the number of created and destroyed

instances per game tick. This information is later used to learn

a separate model for predicting the score changes and analysing

termination conditions. Table I and Table II list all variables

that are tracked for non-player and player entities.

For each object type we learn three decision tree classifiers,

two predicting changes in the x- and y-axis, and a third model

to predict if an object will be destroyed in the next time-step.

Next to the prediction of each entity we also build a classifier

to predict score changes and termination conditions of the

game to be learned. Both are especially relevant for rating the

outcome of an episode in a simulation-based search algorithm.

Without a suitable scoring function the applied search scheme

will not be able to differentiate winning from not-winning

gamestates. The scoring function in the GVGAI-framework

is fixed to interactions between various entities. While the

framework does not provide any information on collisions

between two entities, we can still try to measure the outcome

of such collisions. Here, one or both of those entities are often

removed from the game-state and the score is changed as a

result, e.g. a bullet hitting an alien removes both entities and

scores two points.

For this reason we are tracking all entity creations and

destructions per type. The dataset-model for the general state

classifiers is summarized in Table III. For predicting the score

change we tested two model types. While a linear regression

model seems to be an obvious choice for such a regression

task, we observed that multiple scoring events occur only

rarely. Hence, we also tested decision trees for predicting

nominalized score changes as a second option. We did not

observe a measurable performance difference. Because the

decision trees were easier to interpret we restrict the remaining

evaluation to the application of this classifier.

Predicting winning or losing conditions was based on the

same dataset. However, the random bot only rarely wins a game,

which would be necessary to find the win-conditions. Also,

because the frequency of termination time-steps to continuouing

time-steps is comparatively low (≈ 1:1000) it is very unlikely

that a pruned decision tree will incorporate necessary leaf

nodes. This could be achieved by conditionalizing the dataset

of state-transitions for the last time-step per game to detect

rules for the termination of the game. Those rules need to be

filtered later using a dataset of all remaining state-transitions.

Only rules that are valid in the conditionalized dataset, but not

in the remaining dataset can be considered to be termination

rules. Nevertheless, to create a unified model architecture we

refrain from applying a similar scheme here and base all models

on a set of decision trees.

TABLE I
TRACKED NON-PLAYER ENTITY DATA

Instance Focused Attributes Data Type

position N
2

grid-position N
2

reference vector N
2

last position change N
2

left-/right-/up-/bottom-neighbour type N

time since last update N

Player Focused Attributes Data type

last player action {left, right, up, down, use}
player distance N

2

player reference vector N
2

Target Attributes Data type

changed position N
2

was object destroyed {True, False}

TABLE II
TRACKED PLAYER DATA

Player Focused Attributes Data Type

position N
2

grid-position N
2

reference vector N
2

last position change N
2

left-/right-/up-/bottom-neighbour type N

time since last update N

player action {left, right, up, down, use}

Target Attributes Data type

changed position N
2

was object destroyed {True, False}

TABLE III
GENERAL STATE DATA

Player Focused Attributes Data Type

created objects per type N per type
destroyed objects per type N per type

Target Attributes Data type

changed score N
2

has game ended {Player Won, Player Lost,
Game Continues}
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TABLE IV
PREDICTION ACCURACY ON THE GVGAI-LEARNING TRACK GAMES,

TRAINING LEVELS: ACCURACY OF ALL INSTANCES; VALIDATION LEVELS: ACCURACY OF ALL MOVING INSTANCES.

G1 = ALIENS, G2 = BOULDERDASH, G3 = BUTTERFLIES, G4 = CHASE, G5 = FROGS,
G6 = MISSILE COMMAND, G7 = PORTALS, G8 = SOKOBAN, G9 = SURVIVE ZOMBIES, G10 = ZELDA

Mean Accuracy (unpruned / pruned)
G1 G2 G3 G4 G5

1x training level 2 0.970 / 0.970 0.998 / 0.998 0.980 / 0.962 0.996 / 0.997 0.466 / 0.992
1x training level 3 0.991 / 0.998 0.999 / 0.998 0.933 / 0.947 0.997 / 0.995 0.975 / 0.975

1x validation level 1 0.806 / 0.753 0.636 / 0.616 0.664 / 0.663 0.667 / 0.704 0.700 / 0.803
3x validation level 1 0.773 / 0.663 0.616 / 0.621 0.666 / 0.718 0.850 / 0.776 0.736 / 0.804
5x validation level 1 0.717 / 0.677 0.593 / 0.583 0.665 / 0.665 0.811 / 0.801 0.670 / 0.804

1x validation level 2 0.707 / 0.708 0.595 / 0.561 0.666 / 0.666 0.645 / 0.667 0.667 / 0.667
3x validation level 2 0.730 / 0.742 0.591 / 0.508 0.666 / 0.665 0.671 / 0.692 0.667 / 0.667
5x validation level 2 0.647 / 0.780 0.614 / 0.581 0.744 / 0.723 0.667 / 0.671 0.667 / 0.667

Mean Accuracy (unpruned / pruned)
G6 G7 G8 G9 G10

1x training level 2 0.990 / 0.991 0.998 / 0.998 0.994 / 1.000 0.996 / 0.995 0.987 / 0.987
1x training level 3 0.996 / 0.996 0.998 / 0.997 1.000 / 1.000 0.995 / 0.995 0.998 / 0.997

1x validation level 1 0.635 / 0.643 0.980 / 0.936 0.667 / 0.667 0.670 / 0.604 0.688 / 0.674
3x validation level 1 0.654 / 0.647 0.960 / 0.786 0.667 / 0.727 0.648 / 0.687 0.783 / 0.721
5x validation level 1 0.640 / 0.667 0.667 / 0.950 0.941 / 0.733 0.714 / 0.679 0.752 / 0.726

1x validation level 2 0.420 / 0.539 0.773 / 0.798 0.667 / 0.633 0.692 / 0.707 0.683 / 0.724
3x validation level 2 0.903 / 0.658 0.837 / 0.769 0.667 / 0.542 0.749 / 0.721 0.773 / 0.733
5x validation level 2 0.664 / 0.659 0.667 / 0.667 0.667 / 0.733 0.699 / 0.646 0.735 / 0.751

V. EVALUATION

We evaluated our model architecture on a set of ten games

used in the GVGAI competition’s learning track. In 2017 the

games Aliens, Boulderdash, Butterflies, Chase, Frogs, Missile

Command, Portals, Sokoban, Survive Zombies, and Zelda were

used to compare the submitted agent’s performance (see [20]

for details). For each of these games the framework provides

three levels for training and two levels for validation.
In this study, we did not focus on an agent’s playing

performance, but on its accuracy in predicting the next state.

The accuracy measures the percentage of correctly predicted

instances over the number of all instances to be predicted.

Following the procedure proposed in Section IV we learn a

model after every finished level and test its performance on the

next level. This is done by recording all entities during the first

100 game ticks of the level (or less when the game ends early)

and compare the model’s prediction with the recorded future

state of every entity per game tick. For each game we first play

the three training levels only a single time. Afterwards both

validation levels are played alternately for five times each.
After finishing the first training level we use the collected

data to train a model for predicting every entity of the

second level. In Table IV we compare the model accuracy

of unpruned and pruned decision trees. Higher accuracy per

game is highlighted in bold. After the second level a new

model is built and used to predict every entity in the third

level. During the training levels the accuracy for predicting

all entities is nearly always ≥ 0.90, an exception being the

game Frogs, in which the agent lost the first level after just a

few ticks. This prevented him from collecting enough data for

building a reliable model. However, the high accuracy values

are not surprising, because the data set includes many static

entities, which never move at all. A simple model that always

predicts no state change would also score very high in this

scenario.

To get a better insight on the capabilities of the proposed

model architecture, we use the unseen levels of the validation

set for further evaluation. Here, we do not test the prediction

of all entities, but only on the entities that are known to change

during the next state transition. Therefore, the prediction is

only tested on entities that are about to change at least one

of their target attributes. All these entities would be predicted

incorrectly using the naive assumption of all entities being

static, yielding an accuracy of 0. However, the trained model

still predict changes of moving entities with high accuracy.

Table IV lists the accuracy values of the first, third, and fifth

iteration of playing each validation level.

In our tests there was only rarely a significant difference

between a model of pruned and a model of unpruned decision

trees. While pruning often helps to decrease the influence

of noise in the classification, it can be beneficial to use an

unpruned tree in deterministic games, because they can fully

represent past training examples. Since, we do not know if the

game being tested is deterministic or not, we cannot predict

1756 IEEE Symposium Symposium Series on Computational Intelligence SSCI 2018



which model should be used.

VI. CONCLUSION AND FUTURE WORK

In this work we proposed a model architecture for forward

model approximation in unknown games. The developed model

architecture focuses on the GVGAI-framework, but can be

applied to other reinforcement learning tasks as well. In

contrast to creating a single model we propose to use a model

ensemble. The architecture focuses on reducing the learning and

prediction time by splitting the state into multiple independent

components, which are each modelled by a simpler model.

Those specialized models theoretically decrease the necessary

training data and are faster to process.

The proposed model architecture was evaluated on ten games

of the GVGAI-framework. The prediction accuracy of the

trained models was generally high. Based on this result we

plan to develop a simulation-based search on top of the trained

model architecture. We hope that the prediction of all entities,

instead of just the player, as done in [1], will further improve

the performance of our developed agent.

While the proposed model performs very well in the context

of the GVGAI framework it heavily relies on the character type

information provided by the Video Game Definition Language.

We plan to further extend the decomposition by studying

dependencies between characters and their property values.

An automatic detection of similar behaving components may

further reduce the model size. It may also help to detect global

effects or interactions between different game components,

which are currently not modelled yet, e.g. a switch that opens

a far away door.

Another interesting task it the development of multi-agent

models. In scenarios were multiple players interact with each

other it will be crucial to study the opponent player’s behaviour

to adapt the own behaviour. Such dynamic environments,

which can be strongly related to game theory, pose additional

requirements to the proposed model.

In the future we also plan to analyse the capabilities of

different classifiers in the distributed model architecture that we

used here. Especially the application of probabilistic classifiers

would be interesting, which can detect if entities act randomly

or provide confidence values for its prediction of future states.
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[13] D. Pérez-Liébana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius,
and S. M. Lucas, “General video game AI: a multi-track
framework for evaluating agents, games and content generation
algorithms,” CoRR, vol. abs/1802.10363, 2018. [Online]. Available:
http://arxiv.org/abs/1802.10363

[14] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
Springer, 2018, http://gameaibook.org.

[15] D. Apeldoorn and G. Kern-Isberner, “Towards an understanding
of what is learned: Extracting multi-abstraction-level knowledge
from learning agents,” in Proceedings of the Thirtieth
International Florida Artificial Intelligence Research Society
Conference, V. Rus and Z. Markov, Eds. Palo Alto,
California: AAAI Press, 2017, pp. 764–767. [Online]. Available:
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15510/15038

[16] ——, “An agent-based learning approach for finding and exploiting
heuristics in unknown environments,” in Proceedings of the Thirteenth
International Symposium on Commonsense Reasoning, London, UK,
November 6-8, 2017, ser. CEUR Workshop Proceedings, A. S. Gordon,
R. Miller, and G. Turán, Eds., vol. 2052. Aachen: CEUR-WS.org, 2018.

[17] M. A. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,” SIGKDD
Explorations, vol. 11, no. 1, pp. 10–18, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1656274.1656278

[18] E. Frank, M. A. Hall, and I. H. Witten, “The WEKA Workbench,” Morgan
Kaufmann, Fourth Edition, pp. 553–571, 2016. [Online]. Available:
https://www.cs.waikato.ac.nz/ml/weka/Witten et al 2016 appendix.pdf

[19] R. Kohavi and J. R. Quinlan, “Data mining tasks and methods:
Classification: decision-tree discovery,” in Handbook of data mining
and knowledge discovery. Oxford University Press, Inc., 2002, pp.
267–276.

[20] “General Video Game Artificial Intelligence Competition,”
http://gvgai.net/, accessed: 2018-07-18.

IEEE Symposium Symposium Series on Computational Intelligence SSCI 2018 1757



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


